
Tips
& Tricks

begin
  if FControl.Parent <> nil then begin
    wnd := FControl.Parent.Handle;
    Result := S_OK;
  end else if (FControl.Owner <> nil) and
    (FControl.Owner is TWinControl) then begin
    wnd := TWinControl(FControl.Owner).Handle;
    Result := S_OK;
  end else begin
    wnd := 0;
    Result := E_FAIL;
  end;
end;

➤ Listing 1

var
  fntName : string;
begin
  fntName := ’Vertical’;
  hdlNewFnt := CreateFont(-5, -5, 900 ,900, FW_NORMAL, 0,
    0, 0, DEFAULT_CHARSET, OUT_DEVICE_PRECIS,
    CLIP_DEFAULT_PRECIS, PROOF_QUALITY,
    VARIABLE_PITCH or FF_SWISS, PChar(fntName));
  NewFont := TFont.create;
  NewFont.Handle := hdlNewFnt;
  OldFont := TFont.Create;
  ...

➤ Listing 2

Controlling Internet
Explorer Via OLE Automation
I have just started a small project to control Microsoft
Internet Explorer 3.0 (IE3) using OLE automation and
thought I would share my experiences. To add the IE3
web browser control to your component library, follow
these steps:
➣ Select component/install from the menu.
➣ Press the OCX button.
➣ Select Microsoft Internet Controls from the listbox

and press OK.
➣ Press OK to rebuild the library.
A new component (TWebBrowser) will be added to your
OCX tab and this component can now be added to any
project as per normal.

Documentation for the web browser control is hard
to find, but there is a small SDK-type document avail-
able on the Microsoft web site. Unfortunately, when
you start using the control, you will find that you can
set properties and use methods successfully, but you
cannot capture the browser events.

To make events work successfully you need to make
some changes to the VCL. In method TOleInPlace-
Site.GetWindow, replace the existing code with that
shown in Listing 1.

Then in method TOleClientSite.GetContainer,
change the function result assignment to return
E_NOINTERFACE. Whenever changing the VCL source I
always take a local copy and amend that; I then add the
amended source to the required project, so that the
local copy (in other words the copy in my project
directory, not in Delphi’s main source code directory)
gets linked in. This prevents me from messing up the
true VCL files and is a handy “quick and dirty” way of
making VCL changes.

Contributed by Alistair Moffatt,
alistair@phrenetic.co.uk

QuickReport Exceptions
When running QuickReports, once an exception is
raised the default preview window refuses to show
anything! This should clear the error:

try
  if chkPreview.Checked then
    { check box to switch preview mode on/off  }
    QuickReport1.Preview
  else
    QuickReport1.Print;
finally
  QRPrinter.EndDoc;
  QRPrinter.Cleanup;
end;

Contributed by Richard Smith,
European_SD@compuserve.com

Vertical Fonts
I had to create a vertical font the other day to output
into QuickReport. Fortunately for me it needed to
appear at the same place on each page of the report,
rather than moving around (which would have been
more tricky). Here’s how I did it. In the private section
of the form class definition add:

hdlNewFnt : integer;  //handle of the new font
hdlCurrFnt : integer; //handle of the holding font
NewFont : TFont;
OldFont : TFont;

and in the FormCreate event add the code in Listing 2.
This creates a font about 8 point. It seems that if you

...
OldFont.Assign(qrprinter.canvas.font); //store current font
qrprinter.canvas.font.assign(NewFont); //assign new font
{ describe a rectangle that will fit the vertical font,
  QRShape is an object at the top of the available area on
  the band }
Rect.top := QRShape1.Top + QRShape1.height + 5;
{ calculate the left position based on a component placed
  at the leftmost position - this is my calculation as to
  where the left most pos should be }
Rect.Left := Plan1.Left + (32*(iThisTime-1)) + 10;
//pgHdr is the band it is being written into
Rect.Bottom := pgHdr.Height - 5;
Rect.Right := Rect.Left + 10;
qrprinter.Canvas.textrect(Rect, Rect.Left, Rect.Bottom,
  qryReport.fieldbyname(’Description’).AsString);
qrprinter.canvas.font.assign(OldFont);  //reassign old font
...

➤ Listing 3

May 1997 The Delphi Magazine 59



specify 8 in the first two parameters of the CreateFont
call then it is OK on NT4 but not on Windows 95. Can
anyone explain this? In the BeforePrint event of the
relevant band place the code in Listing 3 and hey
presto!

Contributed by Richard Smith,
European_SD@compuserve.com

Assigning Accelerator Keys At Runtime
Consider a form with a main menu and a notebook
containing a number of pages. Depending on certain
conditions, the objective is to set some of these page
tabs at run-time. The tabs on the notebook are to have
hotkeys, so the problem is how to assign hotkeys to
these tabs without using already existing hotkeys.

In this example I assume that there are no controls
on the form that are not a child of the notebook, so
hotkeys that cannot be used are any in the main menu,
in the notebook tabs, in the notebook popup menu and
then any hotkeys on each respective page where the
tab hotkey need to be assigned.

Looking at the popup menu the only potential hotkey
conflict is any menu items with a shortcut beginning
with Alt (see the procedure GetHotKeysInShortCuts in
Listing 4). I use a TStringList to hold the hotkeys found,
you could also easily use a TStrings so the result would
be assignable from the Items properties of TListBox,
TComboBox, etc. A TStringList can also be passed to hold
any duplicates found, so if so desired these routines

could be used in testing to ensure on complex forms
that there was no hotkey duplication.

The GetHotKeysInWinControl procedure uses recur-
sion to get the hotkeys for a specified control and its
children. If you pass a form to this routine it will get all
the hotkeys in the form.

Much of the credit for this work should go to Dean
Thompson of Classic Software (100033.1230@com-
puserve.com). He gave me the HasNamedProperty func-
tion that uses the very cool undocumented GetPropInfo
and also explained the Controls versus Components
distinction to me, as well as providing many sugges-
tions, including using recursion. We use his excellent
Classic Notebook a lot and you can find the hotkeys on
a Classic page by typecasting the page object as a
TCSPage instead of a TTabPages as described above.

The example in Listing 4 shows how I assign the
hotkeys for the notebook tabs at runtime, it assumes
that Form1 contains a TTabbedNotebook ( called nbk), a
TMainMenu (called mnuMain) and a TPopUpMenu (called pop).
Using a combination of the routines many other
scenarios can be dealt with.

Contributed by Tom Corcoran, tomc@unitime.com

Disk Space Really Free
The DiskFree and DiskSpace functions in Delphi are
designed around what used to be quite reasonable
limits, but times have changed...

Since they return integer (LongInt in Delphi 1) byte-
count values, they are limited to a return value of
MaxLongInt: roughly 2 billion. Thus, run it against a drive

procedure SetHeadings;
var
  slstHotKeys,
  slstHotKeysSave: TStringList;
  procedure SetTab(pageIndex: integer; header: string);
  begin
    { hot keys that can’t be used are <slstHotKeysSave> =
      main menu, notebook tabs, toolbar, popup. This list
      must be added to for each each successive page }
    slstHotKeys.Assign(slstHotKeysSave);
    GetHotkeysInWinControl(TTabPages(
      nbk.Pages.Objects[pageIndex]), slstHotKeys, nil);
    SetAcceleratorKey(slstHotKeys, header);
    nbk.TabCaption[pageIndex] := header;
    slstHotKeys.Clear;
  end;
begin
  slstHotKeys := TStringList.Create;
  slstHotKeysSave := TStringList.Create;
  try
    { pass nil as confident that form contains no duplicates}
    GetHotKeysInMainMenu(form1.mnuMain,
      slstHotkeysSave, nil);
    GetHotKeysInNbkTabs(nbk, slstHotKeysSave, nil);
    GetHotKeysInShortCuts(pop, slstHotKeysSave, nil);
    { tab names could be obtained at run-time }
    SetHeading(1, ’First’);
    SetHeading(2, ’Second’);
    SetHeading(3, ’Third’);
    SetHeading(4, ’Fourth’);
    SetHeading(5, ’Fifth’);
  finally
    slstHotKeys.Free;
    slstHotKeysSave.Free;
  end;
end;
procedure GetHotKeysInWinControl(ctrl: TWinControl;
  slstHotkeys,slstDuplicates: TStringList);
  procedure ChkValidAndAdd(ctrl: TControl);
  var
    hotKey: string;
  begin
    if HasNamedProperty(ctrl, ’Caption’) then begin
      { can use anything to typecast as long as it has a
        caption property }

      hotKey := GetHotKey(TLabel(ctrl).Caption, False);
      AddHotKey(slstHotkeys, slstDuplicates, hotKey);
    end;
  end;
  procedure CycleControls(ctrl: TWinControl);
  var
    i: integer;
  begin
    { use recursion to check for hotkeys on nested
     TWinControls }
    if ctrl.ControlCount > 0 then
      for i := 0 to ctrl.ControlCount - 1 do begin
        if ctrl.Controls[i] is TWinControl then
          CycleControls(TWinControl(ctrl.Controls[i]));
        ChkValidAndAdd(ctrl.Controls[i]);
      end;
  end;
begin
  CycleControls(ctrl);
end;
procedure AddHotKey(slstHotkeys, slstDuplicates: TStringList;
  hotKey: string);
begin
  if hotkey <> ’’ then
    { returns -1 if check not in list, otherwise returns index }
    if slstHotKeys.IndexOf(hotKey) = -1 then
      slstHotKeys.Add(hotkey)
    else
      if Assigned(slstDuplicates) then
        slstDuplicates.Add(hotKey);
end;
procedure SetAcceleratorKey(slstHotKeys: TStringList;
  var toSet: string);
var
  j: integer;
  inList, found : boolean;
  ch : string;
begin
  j := 1;
  found := false;
  while not found do begin
    ch := UpperCase( toSet[j] );
    inList := (slstHotKeys.IndexOf(ch) <> -1);
                              { ** CONTINUED ON NEXT PAGE }

➤ Listing 4

60 The Delphi Magazine Issue 21



{ ** CONTINUED FROM PREVIOUS PAGE } 
    if (not inList) and (ch <> #32) then begin
      slstHotKeys.Add(ch);
      toSet := Copy( toSet, 1, j-1 ) + ’&’ +
        Copy( toSet, j, Length(toSet) );
      found := true;
    end else begin
      inc(j);
      found := (j > Length(toSet));
    end
  end;
end;
function HasNamedProperty(AComponent: TComponent;
  const propertyName: string): boolean;
var
  propInfo: PPropInfo;
begin
  propInfo := GetPropInfo(AComponent.ClassInfo,
    propertyName);
  Result := (propInfo <> nil);
end;
procedure GetHotKeysInNbkTabs(ctrl: TWinControl;
  slstHotkeys, slstDuplicates: TStringList);
var
  i: integer;
  str : TStrings;
  hotKey: string;
begin
  { setup for 2 notebooks }
  if ctrl is TTabbedNotebook then
    str := (ctrl as TTabbedNotebook).Pages
  else if ctrl is TcsNotebook then
    { Classic notebook }
    str := (ctrl as TCsNotebook).Pages
  else
    Exit;
  { add hotkeys on notebook tabs }
  for i := 0 to str.Count - 1 do begin
    hotKey := GetHotKey(str.Strings[i], False);
    AddHotKey(slstHotkeys, slstDuplicates, hotKey);
  end;
end;
procedure GetHotkeysInMainMenu(mnu: TMainMenu;
  slstHotkeys, slstDuplicates: TStringList);
var
  i: integer;
  hotKey: string;
begin
  for i := 0 to mnu.Items.Count - 1 do begin
    hotKey := GetHotKey(mnu.Items[i].Caption, True);
    AddHotKey(slstHotkeys, slstDuplicates, hotKey);
  end;
end;

procedure GetHotKeysInShortCuts(mnu: TMenu;
  slstHotkeys, slstDuplicates: TStringList);
  { use TMenu arguement so can pass TMainMenu and TPopupMenu}
  procedure CycleMenu(itm: TMenuItem);
  var
    i: integer;
    hotKey: string;
    function GetHotKeyInShortCut(
      strShortCut: string): string;
      { will only conflict with hotkey if shortcut in Alt+? format }
    begin
      Result := ’’;
      if Copy(strShortCut, 1, 3) = ’Alt’ then
        Result := Copy(strShortCut, 5, 1);
    end;
  begin
    { use recursion to check for hotkeys in nested
      TMenuItems }
    if itm.Count > 0 then
      for i := 0 to itm.Count - 1 do begin
        CycleMenu(itm.Items[i]);
        if itm[i].ShortCut <> 0 then begin
          hotKey := GetHotKeyInShortCut(
            ShortCutToText(itm[i].ShortCut));
          AddHotKey(slstHotkeys, slstDuplicates, hotKey);
        end;
      end;
  end;
begin
  CycleMenu(mnu.Items);
end;
function GetHotKey(str: string; msg: boolean): string;
var
  i: integer;
  length: byte absolute str;
  nextChar: string;
begin
  i := 1;
  nextChar := Copy(str, i, 1);
  while ((nextChar <> ’&’) and (i <= length)) do begin
    Inc(i);
    nextChar := Copy(str, i, 1);
  end;
  if (i = length) then begin
    { nextChar could be & or not }
    if msg then
     { self check: should never go in here (for TMenuItems) }
     MsgError(Format(’%s has no hotkey’, [str]));
    Result := ’’;
  end else
    Result :=  Copy(str, i + 1, 1);
end;

➤ Listing 4 (continued)

with 3Gb available, and DiskFree will return “2 billion
bytes free boss”. Not a problem in most circumstances,
you might think? Well, it can be if you have clever little
routines for detecting free space before copying or
creating files: you know, the ones you originally wrote
to make sure you weren’t about to overfill a floppy, or
a cluttered hard disk. Something like:

“I can write this file provided its size is less than the
total space available, defined as the disk free space
PLUS the size of any existing copy of the file.”

It’s that final addition that will do your program in
unless you are careful. In pseudocode:

FreeSpaceOnTargetDrive = DiskFree
if TargetFileExists then
   Inc(FreeSpaceOnTargetDrive,
     SizeOfTargetFile) { bzzzt, danger! }

What’s the problem? Take MaxLongInt. Add a number to
it. Oh dear, a supremely negative result. Suddenly our
clever little routine, working on a drive with simply
gigabytes to spare, thinks the free space is, well, less
than zero...

The workaround you choose will depend on your
need, but the key lesson is: don’t do the addition if it

will (or might ever) cause an overflow. Because in the
late 1990s, even in a 32-bit compiler, such things are
entirely possible once again.

Contributed by Peter Hyde, author of TCompress, who
is now busily re-writing his installation programs and
can be reached as peter@spis.co.nz

No Extension
Have you found yourself needing a file name without
the extension? This simple routine is a variation on
Delphi’s ExtractFileName:

function ExtractFileNameNoExt(
  fileName: string): string;
var lengthFileName: byte absolute fileName;
begin
   Result := Copy(ExtractFileName(fileName),
     1, lengthFileName - 4);
end;

Contributed by Tom Corcoran, tomc@unitime.com

Thanks for the Tips, everyone – keep them
coming in! Just drop an email to the Editor on

DelphiMagazine@compuserve.com

62 The Delphi Magazine Issue 21


	Controlling Internet Explorer Via OLE Automation
	QuickReport Exceptions
	Vertical Fonts
	Assigning Accelerator Keys At Runtime
	Disk Space Really Free
	No Extension

